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This paper provides a concise and unified comparison of four distinct variations of
Galerkin’s method. The four Galerkin variations are the explicit (traditional), implicit,
quadratic implicit, and diagonalized-implicit Galerkin methods. Results indicate that the
explicit Galerkin method is superior to all implicit formulations. Among the implicit
methods, the quadratic implicit and diagonalized-implicit perform equivalently and are
significantly better than the standard implicit method. The explicit method is recommended
in all the cases except those in which the number of trial functions is so large that numerical
conditioning affects the eigenvalue estimate. In this case, the diagonalized-implicit method
is recommended.
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1. INTRODUCTION

This paper describes and compares four distinct variations of Galerkin’s method
for obtaining eigenvalue estimates for continuous eigenvalue problems: the explicit,
implicit quadratic-implicit, and diagonalized-implicit methods. The explicit method
is the traditional method described in textbooks; reference [1] refers to this
method as the configuration space method. The implicit method has been in the
literature for a while and has been used by some researchers [1–4]; reference [1]
refers to this method as the state-space method. Quadratic formulations of
eigenvalues problems have been previously proposed and used to estimate
eigenvalues [5, 6]. The diagonalized-implicit method has only recently been formally
proposed [7].

The goal of this paper is to provide a side-by-side comparison of each Galerkin
procedure using a consistent choice of trial function in order to determine whether one
method is to be preferred over the others. In previous investigations [1, 2, 7], a distinction
between different Galerkin procedures and alternative choices of trial function has not
been maintained, and, as a result, the relative performance of each procedure is not always
clear.

This paper provides a concise and unified comparison of the four Galerkin
procedures for a series of test problems. The results indicate that the explicit Galerkin
method is superior to all implicit formulations. This result was also obtained by Jha
and Parker [1]. Among the implicit methods, the quadratic-implicit and diagonalized-
implicit perform equally well and are significantly better than the standard implicit
method.
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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2. PRELIMINARIES

2.1. NUMERICAL CONDITIONING

As motivation, we begin with two simple examples illustrating the effect of numerical
conditioning on eigenvalue estimation. Related discussions can be found in textbooks such
as in references [8–10].

Consider estimating the eigenvalues, �; of the damped, axially moving string eigenvalue
problem [7],

�2Mg þ �Cg þ Dg ¼ 0; ð1Þ

where the differential operators M ; C; and D are

M ¼ 1; C ¼ 2cpþ 2v
@

@x
; D ¼ ðv2 � 1Þ

@2

@x2
; ð2Þ

for parameters c and v; and gðxÞ is the eigenfunction defined on 04x41 with boundary
conditions gð0Þ ¼ gð1Þ ¼ 0: Approximate gðxÞ with the linear expansion

g ¼
XN

n¼1

cnunðxÞ; ð3Þ

where the trial functions are unðxÞ ¼ ð1 � xÞxn and the constants cn are to be determined.
Using Galerkin’s method the eigenvalue estimates are given by the 2N-dimensional, matrix
eigenvalue problem

�Auþ Bu ¼ 0; ð4Þ

where

A ¼
M 0

0 I

" #
; B ¼

C D

�I 0

" #
; ð5Þ

Mmn ¼ hMun; umi; Cmn ¼ hCun; umi; Dmn ¼ hDun; umi; ð6Þ

where I is the N � N identity matrix, m; n ¼ 1; . . . ;N; and h , i is the inner product
associated with equation (1).

This eigenvalue problem is poorly conditioned. The condition number of M exceeds 106

for N > 9 (even sooner than when the inner product is done numerically), which means
that inversion of M is hazardous using double-precision arithmetic. D is also poorly
conditioned, so solving for ��1 does not alleviate the problem. Any numerical errors
arising from the inversion of M will be carried over to any eigenvalue solver that inverts A
in order to solve equation (4). Example 7.7-2 in Golub and van Loan [8] gives a specific
numerical example of this conditioning problem for the generalized eigenvalue problem in
which a condition number of 2� 106 leads to a 22% error in the eigenvalue.

Numerical difficulties arising from poor numerical conditioning are normally
circumvented by using a generalized eigenvalue routine rather than inverting M (using,
for instance, Gaussian elimination) and then applying a matrix eigenvalue solver. While
the performance differences of these two solution algorithms are known to numerical
specialists, they appear to be less well known in the dynamics community. For example,
the standard graduate textbook in vibrations by Meirovitch [11] recommends the latter,
less numerically stable approach.

Figure 1 compares the absolute error in the fundamental (smallest magnitude)
eigenvalue estimate, �1; as a function of N for the damped, axially moving string for
the two different solution algorithms: a generalized eigenvalue solver versus matrix inversion



Figure 1. Absolute error of the fundamental eigenvalue estimate using polynomial trial functions for the
damped, axially moving string as a function of N; c ¼ v ¼ 0	5: }}, generalized eigenvalue solver; - - - -, matrix
inversion followed by a matrix eigenvalue solver.
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followed by a matrix eigenvalue solver; c=v=0	5. These results were calculated using
Matlab. Initially, both estimates are indistinguishable and improve as N increases. At N ¼
7; however, the estimate using matrix inversion degenerates and quickly becomes worthless.
For the generalized eigenvalue solver, the error levels off at about 10�15 for N > 9:

As a second example, consider the same eigenvalue estimate using as trial functions the
axially moving string eigenfunctions [12]

un ¼ einpvx sinðnpxÞ=np
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

p
; ð7Þ

where now n ¼ 
1;
2;
3; . . .
 N: In contrast to the polynomial trial functions of the
previous example, these trial functions actually are linearly dependent, at least in the limit
of N ! 1 [13]. As a result, the same degeneracy occurs as in the previous example
although at a slower rate (the condition number for M is 109 for N ¼ 15). This degeneracy
is visible in the results reported in reference [7]. Linearly dependent trial functions such as
equation (7) can be used to accurately estimate eigenvalues but care must be taken to
avoid numerical artifacts arising from poor numerical conditioning.

2.2. POSITIVE-DEFINITE, GYROSCOPIC EIGENSOLUTIONS

The trial functions for the implicit Galerkin method are normally eigensolutions. For
simplicity, we restrict ourselves here to positive-definite, gyroscopic eigensolutions. For
more general choices, see reference [7]. Consider the eigenvalue problem

b2Mfþ bGfþ Kf ¼ 0; ð8Þ

where M ; G; and K are linear, real, differential operators in some Hilbert space H with
complex inner product h , i, M > 0; K > 0; and f 2 H: The operators have the symmetries

M� ¼ M ; G� ¼ �G; K� ¼ K ; ð9Þ

where the * indicates the adjoint. The eigensolutions are fbn;fng and are numbered such
that n ¼ 
1;
2;
3 . . . and fb�n;f�ng ¼ f %bbn; %ffng; where the overbar denotes complex
conjugation.

The eigensolutions of this system have the following properties [12–14]. First, the
eigenvalues bn are all purely imaginary. Second, the operator L½b� ¼ b2M þ bG þ K is
self-adjoint. Third, the adjoint eigensolution is fb�n;f

�
ng ¼ f %bbn;fng ¼ f�bn;fng: Fourth,
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the eigensolutions can be normalized such that

bnbmhMfn;fmi � hKfn;fmi ¼ �dnm; ð10Þ

bnðbn þ bmÞhMfn;fmi þ bnhGfn;fmi ¼ �dnm; ð11Þ

where dnm is the Kronecker delta. Fifth, the eigensolutions are complete in the following
sense. Let f�; gg be an eigensolution. Then, g can be represented by the expansion

g ¼
X
1

n¼
1;
2;...

cnfn; ð12Þ

where the constants cn satisfy the constraint

�
X
1

n¼
1;...

cnfn ¼
X
1

n¼
1;...

cnbnfn: ð13Þ

This last constraint (13) is the central fact used by the implicit Galerkin method.

3. EIGENVALUE PROBLEM FORMULATION

We wish to construct approximate solutions to the eigenvalue problem

�2Mg þ �Cg þ Dg ¼ 0 ð14Þ

for general, linear, differential operators M; C; and D defined on the Hilbert space H with
g 2 H: For clarity. we recast equation (14) in the first order form as

�Mf þ Cf þ Dg ¼ 0; �g � f ¼ 0; ð15; 16Þ

where now both f ; g 2 H:
Equations (15) and (16) can be written in the state-space form as

�
M 0

0 I

" #
f

g

" #
þ

C D

�I 0

" #
f

g

" #
¼

0

0

" #
: ð17Þ

Occasionally, it is convenient to replace the identity operator I in equation (17) by either C

or D if either has special symmetry properties [12]; such reformulations are equivalent to
equation (17) for both the explicit and implicit Galerkin method. For the explicit Galerkin
method, all state-space formulations of equations (15) and (16) are equivalent to equation
(17) since both equations (15) and (16) are strictly true. In the implicit Galerkin method,
however, equation (16) is not explicitly enforced. Consequently, alternative state-space
formulations of equations (15) and (16) are not necessarily equivalent to equation (17).
Here, we consider three alternative formulations:

�2 0 M

M C

" #
f

g

" #
þ

C D

D 0

" #
f

g

" #
¼

0

0

" #
; ð18Þ

�
M 0

0 �K

" #
f

g

" #
þ

C D

K 0

" #
f

g

" #
¼

0

0

" #
; ð19Þ

�
0 M

M G

" #
f

g

" #
þ

�M 0

ðC � GÞ D

" #
f

g

" #
¼

0

0

" #
: ð20Þ

Formulation (18) recasts the eigenvalue problem in terms of �2 instead of �: Similar
formulations have been considered by references [5, 6, 15, 16]. This formulation has the



ALTERNATIVE GALERKIN METHODS 363
advantage that, for a given number of trial function, twice as many eigenvalue estimates
are obtained as are obtained in the linear case. This may be advantageous, but it has the
fundamental drawback that it is not clear which of the two possible square roots of �2

correspond to the original problem. Since the stabilities implied by the two different square
roots are different when � is not purely imaginary, the approximations obtained by
equation (18) may be of limited value. The latter two formulations (19) and (20) are
motivated by orthogonalities (10) and (11). Formulation (20) was used in reference [7].

4. GALERKIN METHODS

4.1. THE EXPLICIT GALERKIN METHOD

In the standard Galerkin method, herein referred to as the explicit method, both f and g

are independently expressed as a linear combination of trial functions un 2 H :

g ¼
XN

n¼1

cnun; f ¼
XN

n¼1

dnun: ð21Þ

By inspection, we solve equation (16) by letting dn ¼ �cn: The inner products of
equation (15) with um for m ¼ 1; . . . ;N then gives the matrix eigenvalue problem (5)
and (6).

When the un include complex conjugate pairs as they do when un ¼ fn; expressions (21)
can always be re-written in terms of real trial functions, i.e.,

c1u1 þ c2 %uu1 ¼ ðc1 þ c2ÞRe½u1� þ ðc1 � c2ÞIm½u1� ð22Þ

and similarly for dn: It is therefore equivalent to use the real trial functions Re½u1�; Im½u1�;
etc. directly. Hence, the explicit Galerkin method always gives a 2N � 2N ; real,
generalized eigenvalue problem.

4.2. THE IMPLICIT GALERKIN METHOD

The implicit Galerkin’s method proceeds as follows. Use the eigenfunctions fn of
equation (8) as trial functions and let

g ¼
X
N

n¼
1

cnfn ð23Þ

but simply assume

f ¼
X
N

n¼
1

cnbnfn: ð24Þ

In the limit N ! 1; expansion theorem (13) can be used to show convergence. Equation
(16) is satisfied only implicitly as N ! 1: With equation (24) assumed, we then apply
Galerkin’s method to solve either equations (17), (18), (19) or (20). Equation (16) is
ignored. (Note: we cannot apply Galerkin’s method to solve equation (15); this
formulation is degenerate.)

The principal advantage of the implicit method is that the dn are eliminated from the
problem, reducing the number of unknowns by half. Hence, we can use twice as many trial
functions as in the explicit formulation to obtain the same size eigenvalue problem.
However, no simple recombination of the trial functions produces expansions for both g

and f in terms of purely real trial functions. Therefore, except in special cases, the implicit
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procedure with expansion (23) leads to a 2N � 2N complex generalized eigenvalue
problem.

We label and detail the matrix eigenvalue problem derived from each of the distinct
formulations given above. In each case, the eigenvalue problem takes form (4), and we
denote Mmn ¼ hMfn;fmi; Cmn ¼ hCfn;fmi; etc.

(1) Implicit formulation (I): Taking the inner product of equation (17) with ½ %bbmfm fm�
T

gives

Amn ¼ bmbnMmn þ Imn; Bmn ¼ bmbnCmn þ bmDmn � bnImn: ð25Þ

(2) Quadratic-implicit formulation (IQ): Taking the inner product of equation (18) with
½ %bbmfm fm�

T gives

Amn ¼ ðbm þ bnÞMmn þ Cmn; Bmn ¼ bmbnCmn þ ðbm þ bnÞDmn: ð26Þ

(3) Diagonalized-implicit formulation (ID): Taking the inner product of equation (19)
with ½ %bbmfm fm�

T and using orthogonality (10) gives

Amn ¼ bmbnMmn � Kmn ¼ �dmn; Bmn ¼ bmbnCmn þ bmDmn þ bnKmn: ð27Þ

(4) Alternative diagonalized-implicit formulation (ID): Taking the inner product of
equation (20) with ½ %bbmfm fm�

T and using orthogonality (11) gives

Amn ¼ ðbm þ bnÞMmn þGmn ¼ �dmn=bn;

Bmn ¼ bmbnMmn þ bnðCmn �GmnÞ þDmn: ð28Þ

5. COVERGENCE RESULTS

We examine the convergence of each Galerkin formulation for four test
problems, the first three of which are positive-definite, gyroscopic eigenvalue problems.
In each case, we plot the absolute error in �1 and �2; the two smallest magnitude
eigenvalues with positive imaginary parts, as functions of N: For the implicit for-
mulation, N equal to half an odd integer corresponds to keeping one more
positively indexed trial function than negative, i.e., N ¼ 1=2 is a one-term expansion.
In this manner, the convergence comparison is made on the basis of the size of the
underlying matrix eigenvalue problem. This biases the results in favor of the implicit
method since the implicit eigenvalue problem is complex, while the explicit eigenvalue
problem is real; nevertheless, the explicit method still outperforms the implicit method in
every case.

Since the results of the two implicit diagonalized methods are essentially the same, only
the results for the first method are shown.

5.1. EXAMPLE 1: ELASTICALLY SUPPORTED, AXIALLY MOVING STRING

The elastically supported, axially moving string eigenvalue problem is given by

M ¼ 1; C ¼ 2v
@

@x
; D ¼ ðv2 � 1Þ

@2

@x2
þ m; ð29Þ

where v is the axial velocity, m is the stiffness coefficient of the elastic foundation
supporting the string, and gð0Þ ¼ gð1Þ ¼ 0 [17]. The eigenvalues are

� ¼ inpð1 � v2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ m=n2p2ð1 � v2Þ

q
: ð30Þ



Figure 2. Absolute error in the first two eigenvalues of an axially moving string on an elastic foundation,
v ¼ 0	5; m ¼ 100: Methods compared: }}, E; 	 	 	 	 	, I; – – – –, IQ; –	–	, ID.
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For trial functions, we use the axially moving string eigensolutions

bn ¼ ið1 � v2Þnp; fnðxÞ ¼ einpvx sinðnpxÞ=np
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

p
;

M ¼ 1; G ¼ 2v
@

@x
; K ¼ ðv2 � 1Þ

@2

@x2
:

Figure 2 shows the absolute error in �1 and �2 for the different methods as functions
of N for v ¼ 0	5 and m ¼ 100: For N > 4; the explicit method is best for both
eigenvalues; the next best is either the implicit diagonal or implicit quadratic which
converge at the same rate; the slowest convergence is given by the standard implicit
method.

This problem is unusual in that the first three estimates of the implicit quadratic method
for �1 are extraordinarily accurate. This artifact is interesting but of limited value since it
does not happen in general and cannot be verified without knowing the eigenvalues. It
does, however, rather dramatically indicate that convergence is not monotonic for the
quadratic formulation.

5.2. EXAMPLE 2: AXIALLY MOVING CABLE

The operators of the axially moving cable eigenvalue problem are [18]

M ¼ 1; C � 2v
@

@x
; D ¼

@

@x
ðv2 � ðm2 þ v2ÞpðxÞÞ

@

@x

� �
; ð32Þ



Figure 3. Absolute error in the first two eigenvalues of an axially moving cable, v ¼ m2 ¼ 0	5: }}, E; 					, I;
– – – –, IQ; –	–	, ID.
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where v is the axial velocity, m2 is the dimensionless catenary parameter, pðxÞ is the tension
distribution

pðxÞ ¼ v2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ ðx � 1Þ2

q	 

=ðm2 þ v2Þ ð33Þ

and gð0Þ ¼ gð1Þ ¼ 0: For this problem, there is no closed-form expression for the exact
eigenvalues. In this case, the ‘‘exact’’ eigenvalues were computed using a shooting method
(i.e., the ODE was integrated from x ¼ 0 to 1 adjusting the unknown boundary condition
at x ¼ 0 until the boundary condition at x ¼ 1 was satisfied). For v ¼ m2 ¼ 0	5; we take
the first two eigenvalues to be

�1 ¼ 2	278551952548856i; �2 ¼ 4	516201249694341i: ð34Þ

The axially moving string eigenfunctions (31) are used as trial functions.
Figure 3 shows the absolute error in �1 and �2 for the different methods as functions of N

for v ¼ m2 ¼ 0	5: As in the first example, for N > 4; the explicit method is best for both
eigenvalues; the next best is either the implicit diagonal or implicit quadratic which converges
at about the same rate; the slowest convergence is given by the standard implicit method.

5.3. EXAMPLE 3: AXIALLY MOVING BEAM WITH TAPERED STIFFNESS

The operators of the eigenvalue problem of the simply supported, axially moving beam
with tapering bending stiffness are

M ¼ 1; C ¼ 2v
@

@x
; D ¼

@2

@x2
ð1 � bxÞ

@2

@x2

� �
þ ðv2 � m2Þ

@2

@x2
; ð35Þ



Figure 4. Absolute error in the first two eigenvalues of a tapered axially moving beam, v ¼ b ¼ 0	5; m ¼ 1:
}}, E; 					, I; – – – –, IQ; –	–	, ID.

ALTERNATIVE GALERKIN METHODS 367
where v is the axial velocity, m is the beam tension, and b is the tapering factor. Simply
supported boundary conditions are gð0Þ ¼ g;xxð0Þ ¼ gð1Þ ¼ g;xxð1Þ ¼ 0: These operators
may be used to model travelling webs in which the bending stiffness changes due to heating
and drying as the web crosses the span.

We use the axially moving beam eigenfunctions as trial functions for this problem:

G ¼ 2v
@

@x
; K ¼

@4

@x4
þ ðv2 � m2Þ

@2

@x2
: ð36Þ

The eigenfunctions themselves must be calculated numerically [12]. Appendix A gives a
simplified, robust method for this calculation.

Figure 4 shows the absolute error in �1 and �2 for the different methods as functions of
N for v ¼ b ¼ 0	5 and m ¼ 1: Once again the exact eigenvalues were determined using a
shooting method and taken to be

�1 ¼ 8	877457741110753i; �2 ¼ 34	296542960463400i: ð37Þ

As in the previous examples, the explicit method is best; the next best is either the implicit
diagonal or implicit quadratic which converges at about the same rate; the slowest
convergence is given by the standard implicit method. The final eigenvalue errors level off
at about 10�10, which is about five orders of magnitude higher than in the previous
examples. This appears to be caused by numerical errors derived from the lack of a closed
form expression for the trial functions.



Figure 5. Absolute error in the first two eigenvalues of a damped, axially moving string, v ¼ c ¼ 0	5: }}, E;
					, I; – – – –, IQ; –	–	, ID.
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5.4. EXAMPLE 4: DAMPED, AXIALLY MOVING STRING

The operators of the damped, axially moving string eigenvalue problem are

M ¼ 1; C ¼ 2cpþ 2v
@

@x
; D ¼ ðv2 � 1Þ

@2

@x2
; ð38Þ

where v is the axial velocity, c is the damping factor and gð0Þ ¼ gð1Þ ¼ 0: The exact
eigenvalues are

�n ¼ �ð1 � v2Þpc þ inpð1 � v2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2=n2

q
: ð39Þ

The axially moving string eigenfunctions (31) are used as trial functions.
Figure 5 shows the absolute error in �1 and �2 for the different methods as functions of

N for v ¼ c ¼ 0	5: Unlike the previous examples, in this example the quadratic-implicit
and diagonalized-implicit method are competitive with the explicit method for N512: For
N > 12; the explicit method is once again superior. The standard implicit method is
significantly worse than the other methods.

6. DISCUSSION

The results demonstrate that the explicit Galerkin method is superior to all implicit
methods. For very small N (say N54 in the test problems), no method is superior for
every problem; for moderate and large N; the explicit Galerkin method is superior.



Figure 6. Absolute error in the fundamental eigenvalue of a damped, axially moving string using different trial
functions, v ¼ c ¼ 0	5: }}, polynomials; 					, sinðnpxÞ; –	–	, axially moving string eigenfunctions. The explicit
Galerkin method is used.

ALTERNATIVE GALERKIN METHODS 369
These conclusions are supported by the results of other investigations [1, 2, 7]. However,
the results reported in these other investigations are not as clear-cut as those presented
here because these other investigations have simultaneously examined two related, but
independent issues: choice of trial function and trial function independence/numerical
conditioning.

A common theme running throughout previous investigations has been the idea that the
fn may be a superior choice for Galerkin trial functions whenever the system to be
examined is a ‘‘small’’ perturbation from the underlying positive-definite, gyroscopic
system used to define fn: While this idea is plausible, it is easy to show by counterexample
that it is not true in general, at least for large N: Consider the damped axially moving
string problem, solved using the explicit Galerkin method with the following three trial
functions: the polynomials unðxÞ ¼ ð1 � xÞxn; sinðnpxÞ; and the axially moving string
eigensolutions (31). If the perturbation idea were sound, then the polynomial trial
functions would be the worst of these three sets of trial functions since the other two are
derived from the perturbations c ¼ v ¼ 0 and c ¼ 0 respectively. In fact, the polynomial
trial functions are the best set, as shown in Figure 6 for c ¼ v ¼ 0	5: Despite the fact that
the polynomials possess none of the gyroscopic character or spatial phase distribution of
the axially moving string eigenfunctions, they constitute a preferred discretization basis for
this particular problem.

For small N and, in particular, N ¼ 1=2 and 1, both the system perturbation idea and
the implicit Galerkin method can sometimes be astonishingly accurate, as illustrated in
Figure 2. It is unclear how general or how useful this might be.

The other issue that has arisen in previous investigations has been the numerical
conditioning of the eigenvalue problem. We have been able to skirt around this issue here
by restricting ourselves to simple problems with simple geometries for which we obtain
excellent convergence with just a handful of trial functions. There are many real-world
problems in which, due to numerical stiffness or complex geometry, hundreds or
thousands of trial functions must be used in order to obtain consistently accurate
predictions for the first few eigenvalues of the system. For example, Wickert [3] uses 240
degrees of freedom (80 axially moving string eigenfunctions) to solve the free vibration
foil-bearing problem. For problems such as these, the numerical conditioning of the
eigenvalue problem is at least as important as any dynamics encoded in the trial functions.
(This, of course, is one reason why the finite element method is so successful.) Of the
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methods considered here, only the diagonalized-implicit methods remain well conditioned
for very large N : Consequently, the diagonalized-implicit method may be preferable to the
explicit method in the case where N is sufficiently large that numerical conditioning
problems hinder accurate, explicit eigenvalue estimation.

Finally, as one reviewer noted, all of our examples are derived from models of axially
moving materials, and, as a result, our conclusions have only been tested for this narrow
category of problems. We have limited our examples to one-dimensional, positive-definite,
gyroscopic systems and compared only the first one or two eigenvalues in order to improve
the clarity of the exposition; this naturally limits the scope of our conclusions. Similar
conclusions may well apply to more general systems.

7. CONCLUSIONS

This paper provides a concise and unified comparison of four distinct variations of
Galerkin’s method for a series of test problems. The four Galerkin variations are the
explicit, implicit, quadratic-implicit, and diagonalized-implicit Galerkin methods. Results
indicate that the explicit Galerkin method is superior to all implicit formulations. Among
the implicit methods, the quadratic-implicit and diagonalized-implicit perform equally
well and are significantly better than the standard implicit method. The explicit method is
recommended in all cases except those in which the number of trial functions is so large
that numerical conditioning affects the eigenvalue estimation. In this case, the
diagonalized-implicit method is recommended.
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APPENDIX A: TENSIONED, AXIALLY MOVING BEAM EIGENFUNCTIONS

Since there is no known analytic formula, the eigensolutions for the tensioned, axially
moving beam are computed numerically. Wickert and Mote [12] describe the standard
calculation procedure in which the roots of the characteristic equation are found
numerically. This method is straightforward but suffers from three defects: (1) it provides
no good initial guesses for the roots; (2) once a root is found, additional calculations are
required in order to determine its magnitude relative to other roots or the number of nodes
in the eigensolution; and (3) the characteristic equation is generally written and evaluated as
a complex-valued function even though it is purely imaginary (for the positive-definite case).

Here, we give an equivalent method for determining the simply supported
eigensolutions in which each mode is found as a perturbation from the stationary beam
eigensolutions. As a result, each of the above defects is corrected.

We parameterize the nth eigensolution of (36) (n ¼ 
1;
2; . . .) in terms of two
unknowns b and c as follows. Let

%mm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2p2

p
; a ¼ ðm2 þ c2n2p2 þ 2b2 � v2Þ1=2= %mm; ðA:1;A:2Þ

bn ¼ io ¼ isgnðnÞ½ðncp� bÞðncpþ bÞða2 %mm2 þ b2Þ�1=2: ðA:3Þ

A multi-dimensional root finder is used to find b and c such that both the dispersion
relation and the characteristic equation are simultaneously satisfied. The dispersion
relation is

bða2 %mm2 þ c2n2p2Þ � ov ¼ 0 ðA:4Þ

and the characteristic equation is

sinhða %mmÞ sinðncpÞ½ða2 %mm2 þ 2b2 þ n2c2p2Þ2 � 4b2ðb2 þ 2n2c2p2Þ�

þ 8ab2cnp %mm½coshða %mmÞ cosðncpÞ � cosð2bÞ� ¼ 0: ðA:5Þ

The unnormalized eigenfunction is

fn ¼
X4

k¼1

cke
akx; ðA:6Þ

where

a1;2 ¼ 
incpþ ib; a3;4 ¼ 
a %mm� ib ðA:7Þ

and

c1 ¼ 1; c2D ¼ �a2
1ðe

a4 � ea3Þ þ a2
3ðe

a4 � ea1 Þ � a2
4ðe

a3 � ea1Þ;

c3D ¼ a2
1ðe

a4 � ea2 Þ � a2
2ðe

a4 � ea1Þ þ a2
4ðe

a2 � ea1 Þ;

c4D ¼ �a2
1ðe

a3 � ea2Þ þ a2
2ðe

a3 � ea1 Þ � a2
3ðe

a2 � ea1 Þ;

D ¼ a2
2ðe

a4 � ea3Þ � a2
3ðe

a4 � ea2 Þ þ a2
4ðe

a3 � ea2 Þ: ðA:8Þ
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The initial guess is based on the stationary beam, simply supported solution given by b ¼ 0
and c ¼ 1: For the nth eigensolution, we start the non-linear root finding routine with the
guesses

b ¼ npv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4n2p2

p
; c ¼ 1 �

0	2v2

n2p2 þ 100m2

� �jnj

� 1: ðA:9Þ

Numerical experiments suggest that this is an excellent initial guess. Over the range n ¼

1; . . . ;
30; 04m4100 and 04v40	8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
; the maximum error in b and c is 56%.

In all the cases, the multi-dimensional root finder converged quickly and no computational
difficulties were found (such as having to take the square root of a negative number).
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